منابع مشابه
On positive operator-valued continuous maps
In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that ext-ray C+(K,L(H)) = {R+1{k0}x⊗ x : x ∈ S(H), k0 is an isolated point of K} ext B+(C(K,L(H))) = s-ext B+(C(K,L(H))) = {f ∈ C(K,L(H) : f(K) ⊂ ext B+(L(H))}. Moreover we describe exposed, strongly exposed and denti...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملZero Product Preserving Maps of Operator Valued Functions
Let X,Y be locally compact Hausdorff spaces and M,N be Banach algebras. Let θ : C0(X,M) → C0(Y,N ) be a zero-product preserving bounded linear map with dense range. We show that θ is given by a continuous field of algebra homomorphisms from M into N if N is irreducible. As corollaries, such a surjective θ arises from an algebra homomorphism, provided thatM is a W*-algebra and N is a semi-simple...
متن کاملOperator-valued tensors on manifolds
In this paper we try to extend geometric concepts in the context of operator valued tensors. To this end, we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra, and reach an appropriate generalization of geometrical concepts on manifolds. First, we put forward the concept of operator-valued tensors and extend semi-Riemannian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1991
ISSN: 0004-2080
DOI: 10.1007/bf02384332